努努书坊

繁体版 简体版
努努书坊 > 巅峰学霸 > 第104章 数学不是那么简单……但也不难!

第104章 数学不是那么简单……但也不难!(1 / 18)

张树文犹豫了片刻,然后选择站了起来,走到乔喻的身边,随手将最后的板书擦掉,然后开始了现场讲解。

“riemann-roch定理是代数几何中的一个基本定理,用于描述代数曲线上某些函数或形式的维度。具体来说,riemann-roch定理适用于代数曲线x上的任意除子d,定理陈述代数曲线上与除子d相关联的函数空间 l(d)的维数。

它的具体陈述就是(d)=deg(d)+1g+(kd)。它有两个部分互为补充,描述了除子d与剩余部分 kd的平衡关系。但有特殊情况,当d的度数足够大时,(kd)为零,所以这种情况下(d)=deg(d)+1g,你明白这代表什么吗?”

“d的度数足够大,维数与度数就是线性关系。”乔喻立刻答道。

“那么当d为零的时候……”

“(0)=1g+(k)……哦,张教授,我明白您的意思了……所以这部分的证明其实可以不用那么繁琐,因为亏格g(x)可以直接通过riemann-roch定理得出,咦,那这部分的证明就不那么麻烦了……让我想想……”

说完,乔喻拿起了粉笔,开始在黑板另一边书写。

“也就是说构建函数的时候……嗯,dimqh1(cp是量子化后的同调群维数,嗯,取决于曲线的亏格g和量子算符 q……这部分可以通过计算典范因子,得到h1(cp)的维数……

所以分解后的维数关系直接就是dimqh1(cp)=gf(q),张教授,您看这部分的推导这样对不对?”

张树文深吸了口气,让自己表情没有一丝动容,然后点了点头。

“太好了,那下一步就好证明了……推导出同调群的维数后,那么量子化同调群的维数越大,就代表曲线几何复杂性越高,曲线上的有理点个数就会受限,再加上

『加入书签,方便阅读』