二阶张量场切使用几何单位制 c≡1,统一量纲,于是得到:
rac12rgac=8πgc4tαβ
此即电磁作用下的爱因斯坦场方程。(之前有读者一直好奇场方程怎么来的,有机会就写了一下,全程靠记忆打出来的,应该没错,我这大概是起点第一个把场方程详细推导过程写出来的书?大概.)
哪怕是截止到后世的2023年。
爱因斯坦场方程依旧没有解析解,只有一些特解。
其中最著名的特解显然就是史瓦西解,也就是史瓦西度规——早先提及过,度规就是解的一种说法。
而在这少数特解中,有一个解最为特殊。
它便是.
ads,也就是反德西特度规。
它是爱因斯坦场方程在宇宙常数为负时的最大对称真空解,通常也被称为“点内空间”。
这个特解出现的时间很早,毕竟威廉·德西特是最早几位和爱因斯坦共同研究时空结构的学者,反德西特度规和德西特度规都是用他名字命名的。
但是
这个特解虽然存世的时间很长,但一直以来都没有多少物理方面的研究价值。
不过如今看来,似乎杨振宁在这方面发现了什么?
随后杨振宁沉吟了一会儿,继续说道:
“老黄,你应该知道,在反德西特时空中,时空不是渐近下趋向平坦的。”
“也就是说,在距离中心天体较远处,时空依然有曲率存在,而并非一般的平直空间。”
“所以我在想,如果我们能以ads为理论基础,整合出一个能够描述引力子的模型,然后再去寻找它在宇宙中的迹象”
“这样一来,有没有可能不需要达到普朗克能级,就能够发现引力子的存在呢?”
黄昆闻言一怔。
不过很